THE EFFECTS OF PUBLIC INVESTMENT ON PRODUCTIVITY

An analysis of infrastructure spending

By: Ellison Rhodes MATH 2414

Types of public stimulus

- Tax decrease
 - Decreases tax burden to put more cash into markets
 - Decreases public revenues
- Direct payments
 - Increases money supply in markets
 - Increases public deficits
- Subsidies
 - Decreases prices for consumers by paying industry
 - Increases deficits
- Infrastructure projects
 - Increases money supply with shovel ready jobs
 - Provides logistics for productive activity
 - Increases deficits

Infrastructure and subsidies

- High speed rail (HSR)
 - Japan and China
- Eisenhower Interstate system
 - For every \$1 spent has created \$6 of economic activity
- NASA patents
 - Gave SpaceX and other private companies cost savings on prior research
- Google NSF grants
 - \$4.5 million grant turned into a trillion-dollar company plus spillover effects

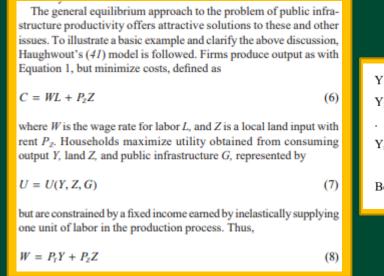
Research Methods: Highspeed Rail

High-speed rail and regional economic productivity through agglomeration and network externality: A case study of inter-regional transportation in Japan

The average share of HSR distance out of total trip distance, represented by d_i , is defined as:

$$d_i = \frac{1}{N} \sum_{j \in N} \left[\frac{DH_{ij}}{D_{ij}} \right]$$

The average share of HSR travel time out of total travel time to/from a region, represented by r_i , which is defined as:


$$r_i = \frac{1}{N} \sum_{j \in N} \left[\frac{TH_{ij}}{T_{ij}} \right]$$

Does High-Speed Rail Promote Enterprises Productivity? Evidence from China

$$\begin{split} &\ln_persale_{cit} = \delta_0 + \delta_1 d_hsr_{ct} + \delta_r X_{it} + \delta_m \Omega_{ct} + \delta_n \nu_{ct} + \lambda_c + year_t + \phi_i \\ &+ \varepsilon_{cit}. \end{split}$$

Research Methods: General Infrastructure

- Public Infrastructure and Economic Productivity A Transportation-Focused Review
- Public Productive Infrastructure and Economic Growth
- Estimating Productivity of Public Infrastructure Investment

$$\begin{split} Y_1 &= t_{11}Z_1 + t_{21}Z_2 + ... + t_{n1}Z_n \\ Y_2 &= t_{12}Z_1 + t_{22}Z_2 + ... + t_{n2}Z_n \\ . \\ Y_n &= t_{1n}Z_1 + t_{2n}Z_2 + ... + t_{nn}Z_n \\ \end{split}$$
Being: Y_i the i-th factor, Z_j the typified variable S_j and t_{ij} the weightings.

2.4 Calculating the Return

With estimates of β , the firm-specific elasticity e_{it} defined in (5) can be obtained by a nonparametric/polynomial regression, where ω_{it} is obtained by (7). Then, we use sales revenue of each firm as the weight to aggregate these firm-level output elasticities into an industry average, and adjust the ratio between value-added and sales revenue:

$$e_{st} = \left(\sum_{i} e_{it} \frac{R_{ist}}{R_{st}}\right) \frac{dv_s}{dr_s},\tag{9}$$

where $\frac{R_{ist}}{R_{at}}$ represents firm *i*'s revenue as a share of total revenue in industry *s* and year *t*; the ratio $\frac{dv_s}{dr_s}$ is obtained by a fixed-effect regression of log value-added on log sales revenue for industry *s*. Finally, we use value-added of each industry as the weight to aggregate these industry-level output elasticities into an average for the manufacturing sector:

$$\sum_{s} e_{st} \frac{V_{st}}{V_t},\tag{10}$$

where $\frac{V_{st}}{V_t}$ denotes industry s's value-added as a share of total value-added in the manufacturing sector in year t.

 $e_t =$

Eisenhower Interstate System

- For every dollar spent at least \$6 in economic activity is generated annually
- That's a 600% return on investment per year
- We can fashion projected economic outcomes as a geometric series

$$s_n = \frac{a_1(1-r^n)}{1-r}$$
$$a = 1$$
$$r = 6$$
$$|r| > 1$$
Diverge

Geometric Series

- Current proposed infrastructure bill is \$2 trillion
- Conservative estimates give a .3 percent increase in GDP per year

$$I(n) = \$2T \sum_{k=0}^{n} 0.3^k$$

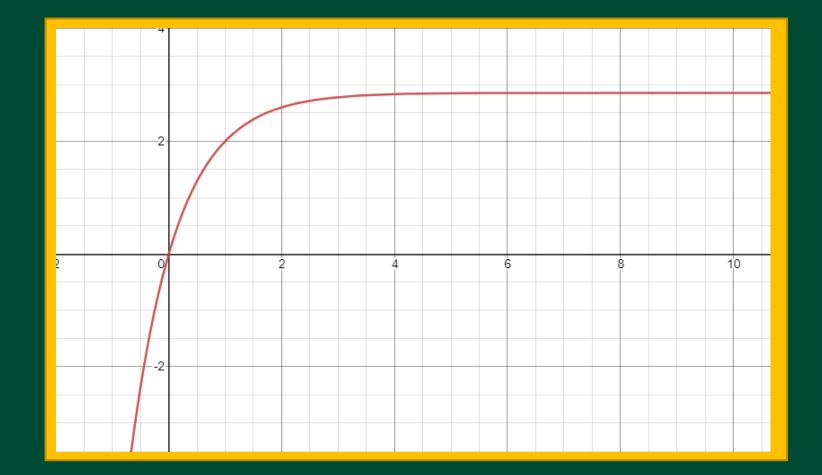
Year	0	1	2	3	4
Economic	\$0	0.3 * \$2T	$0.3^2 * \$2T$	$0.3^3 * \$2T$	$0.3^4 * \$2T$
Growth		= \$600 <i>B</i>	= \$180 <i>B</i>	= \$54 <i>B</i>	= \$16.2 <i>B</i>

Annual Growth

$$s_n = \frac{a_1(1 - r^{n+1})}{1 - r}$$

$$s_n = \frac{\$2T(1 - 0.3^{n+1})}{0.7}$$

n(year)	n = 1	n = 2	<i>n</i> = 3	n = 4
Economic Growth	\$2.6 <i>T</i>	\$2.78 <i>T</i>	\$2.843 <i>T</i>	\$2.8502 <i>T</i>


Finding the convergence of growth

$$I = \lim_{n \to \infty} \sum_{k=0}^{n} Ar^{k} = \frac{A}{1-r}$$
$$= \$2.85714T$$

Reaches convergence after 10 years

n(year)	n = 1	r	ı = 2	n =	= 3	n = 4	4	<i>n</i> = 5	<i>n</i> = 6
Economic Growth	\$2.6T	\$2	2.78T	\$2.8	43 <i>T</i>	\$2.850	2T	\$2.855067	T \$2.85652T
n(year)	n = 7		<i>n</i> =	8	n	= 9		<i>n</i> = 10	<i>n</i> = 11
Economic Growth	\$2.85696	6T	\$2.857	'09T	\$2.8	5713 <i>T</i>	\$2	2.85714 <i>T</i>	\$2.85714 <i>T</i>

Conclusions

- You can use these analysis to show the benefits of public investment
- Private business has a place but public spending often does the heavy lifting
- Public spending is especially beneficial for non-excludable and non-rivalrous goods

Sources

- The Short- and Long-Term Impact of Infrastructure Investments on Employment and Economic Activity in the U.S. Economy https://www.epi.org/publication/impact-of-infrastructure-investments/
- 40 Years of the US Interstate Highway System: An Analysis of The Best Investment A Nation Ever Made <u>http://www.publicpurpose.com/freeway1.htm</u>
- Productivity and the Highway Network: A Look at the Economic Benefits to Industry from Investment in the Highway Network
 <u>https://www.fhwa.dot.gov/policy/otps/o60320b/</u>
- Does High-Speed Rail Promote Enterprises Productivity? Evidence from China <u>https://www.hindawi.com/journals/jat/2019/1279489/</u>
- High-speed rail and regional economic productivity through agglomeration and network externality: A case study of inter-regional transportation in Japan <u>https://www.sciencedirect.com/science/article/pii/S2213624X1730130X</u>
- Public Infrastructure and Economic Productivity A Transportation-Focused Review <u>https://www.ebp-us.com/sites/default/files/project/uploads/Baird-2005-infrastructure%20productivity.pdf</u>
- PUBLIC PRODUCTIVE INFRASTRUCTURE AND ECONOMIC GROWTH <u>https://core.ac.uk/download/pdf/7040206.pdf</u>
- The Macroeconomic Consequences of Infrastructure Investment https://www.nber.org/system/files/chapters/c14366/c14366.pdf
- Estimating Productivity of Public Infrastructure Investment <u>http://cesi.econ.cuhk.edu.hk/wp-content/uploads/Estimating-Productivity-of-Public-Infrastructure-Investment.pdf</u>
- Investments in Basic Research Today... https://www.aau.edu/sites/default/files/%40%20Files/Research%20and%20Scholarship/Why%20University%20Research%20Matters/Infographics/Basi cResearch--Google.pdf
- NASA RELEASES ROCKET AND AIRCRAFT PATENTS FOR SPACEX AND BLUE ORIGIN TO SINK TEETH INTO https://www.inverse.com/article/15272-nasa-releases-rocket-and-aircraft-patents-for-spacex-and-blue-origin-to-sink-teeth-into